
ECE 604, Lecture 18

November 1, 2018

In this lecture, we will cover the following topics:

• Homomorphism of Uniform Plane Waves and Transmission Line Equa-
tions:

– TE or TEz Waves

– TM or TMz Waves

• Wave Polarization:

– Arbitrary Polarization Case and Axial Ratio

– More about Polarization and Power Flow

• A Few Words about Faraday Rotation

Additional Reading:

• Sections 6.6, 6.8 of Ramo, Whinnery, and Van Duzer.

• Lecture Notes 11, Prof. Dan Jiao.

• Section 2.5, J.A. Kong, Electromagnetic Wave Theory.

• Lecture 18, ECE 350X.

You should be able to do the homework by reading the lecture notes alone.
Additional reading is for references.

Printed on November 10, 2018 at 13 : 33: W.C. Chew and D. Jiao.
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1 Homomorphism of Uniform Plane Waves and
Transmission Lines Equations

It turns out that the plane waves through layered medium can be mapped into
the multi-section transmission problem due to mathematical homomorphism
between the two problems. Hence, we can kill two birds with one stone: apply
all the transmission line techniques and equations that we have learnt so solve
the waves through layered medium problems.

For uniform plane wave, we know that with ∇ → −jβ, we have

βββ ×E = ωµH (1.1)

βββ ×H = −ωεE (1.2)

for a general isotropic homogeneous medium. We will specialize these equations
for different polarizations.

1.1 TE or TEz Waves

For this, one assumes a TE wave traveling in z direction with electric field
polarized in the y direction, or E = ŷEy, H = x̂Hx + ẑHz, then we have from
(1.1)

βzEy = −ωµHx (1.3)

βxEy = ωµHz (1.4)

From (1.2), we have

βzHx − βxHz = −ωεEy (1.5)

Then, expressing Hz in terms of Ey from (1.4), we can show from (1.5) that

βzHx = −ωε cos2 θEy (1.6)

where β cos θ = βz. Eqns. (1.3) and (1.6) can be written to look like the
telegrapher’s equation by letting −jβz → ∂/∂z to get

∂

∂z
Ey = jωµHx (1.7)

∂

∂z
Hx = jωε cos2 θEy (1.8)

If we let Ey → V , Hx → −I, µ → L, ε cos2 θ → C, the above is exactly analo-
gous to the telegrapher’s equation. The equivalent characteristic impedance of
these equations above is then

Z0 =

√
L

C
=

√
µ

ε

1

cos θ
=

√
µ

ε

β

βz
=
ωµ

βz
(1.9)
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The above is the wave impedance for a propagating plane wave with propagation
direction or the β inclined with an angle θ respect to the z axis. When θ = 0,
the wave impedance becomes the intrinsic impedance of space.

A two region, single interface reflection problem can then be mathematically
mapped to a single-junction two transmission line problem. The equivalent
characteristic impedances of these two regions are then

Z01 =
ωµ

β1z
, Z02 =

ωµ

β2z
(1.10)

We can use the above to find Γ12 as given by

Γ12 =
Z02 − Z01

Z02 + Z01
=

(µ2/β2z)− (µ1/β1z)

(µ2/β2z) + (µ1/β1z)
(1.11)

The above is the same as the Fresnel reflection coefficient found earlier for TE
waves after some simple re-arrangement.

1.2 TM or TMz Waves

For the TM polarization, from duality principle, the corresponding equations
are, from (1.7) and (1.8),

∂

∂z
Hy = −jωεEx (1.12)

∂

∂z
Ex = −jωµ cos2 θHy (1.13)

Just for consistency of units, we may chose the following map to convert the
above into the telegraphers equations, viz;

Ey → V, Hy → I, µ cos2 θ → L, ε→ C (1.14)

Then, the equivalent characteristic impedance is now

Z0 =

√
L

C
=

√
µ

ε
cos θ =

√
µ

ε

βz
β

=
βz
ωε

(1.15)

The above is also termed the wave impedance of a TM propagating wave making
an inclined angle θ with respect to the z axis. Notice again that this wave
impedance becomes the intrinsic impedance of space when θ = 0.

Now,

Γ12 =
(β2z/ε2)− (β1z/ε1)

(β2z/ε2) + (β1z/ε1)
(1.16)

Notice that (1.16) has a sign difference from the definition of RTM derived earlier
in the last lecture. The reason is that RTM is for the reflection coefficient of
magnetic field while Γ12 above is for the reflection coefficient of the voltage or
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the electric field. This difference is also seen in the definition for transmission
coefficients.

Because of the above homomorphism, one can easily use the multi-section
transmission line formulas to study electromagnetic waves in layered media
shown in Figures 1 and 2. Figure 2 shows the case of a normally incident
wave into a layered media. For this case, the wave impedance becomes the
intrinsic impedance.

Figure 1:
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Figure 2: For normal incidence, the wave impedances becomes intrinsic
impedances (Courtesy of J.A. Kong, Electromagnetic Wave Theory).

2 Wave Polarization

Studying wave polarization is very important for communication purposes. A
wave whose electric field is pointing in the x direction while propagating in the
z direction is a linearly polarized (LP) wave. The same can be said of one with
electric field polarized in the y direction. It turns out that a linearly polarized
wave suffers from Faraday rotation when it propagates through the ionosphere.
For instance, an x polarized wave can become a y polarized due to Faraday
rotation. So its polarization becomes ambiguous: to overcome this, Earth to
satellite communication is done with circularly polarized (CP) waves. So even
if the electric field vector is rotated by Faraday’s rotation, it remains to be a
CP wave. We will study these polarized waves next.
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We can write a general uniform plane wave propagating in the z direction
as

E = x̂Ex(z, t) + ŷEy(z, t) (2.1)

Clearly, ∇·E = 0, and Ex(z, t) and Ey(z, t) are solutions to the one-dimensional
wave equation. For a time harmonic field, the two components may not be in
phase, and we have in general

Ex(z, t) = E1 cos(ωt− βz) (2.2)

Ey(z, t) = E2 cos(ωt− βz + α) (2.3)

where α denotes the phase difference between these two waves components. We
shall study how the linear superposition of these two components behaves for
different α. First, we set z = 0 to observe this field. Then

E = x̂E1 cos(ωt) + ŷE2 cos(ωt+ α) (2.4)

For α = π
2

Ex = E1 cos(ωt), Ey = Ez cos(ωt+ π/2) (2.5)

We evaluate the above for different ωt’s

ωt = 0, Ex = E1, Ey = 0 (2.6)

ωt = π/4, Ex = E1/
√

2, Ey = −E2/
√

2 (2.7)

ωt = π/2, Ex = 0, Ey = −E2 (2.8)

ωt = 3π/4, Ex = −E1/
√

2, Ey = −E2/
√

2 (2.9)

ωt = π, Ex = −E1, Ey = 0 (2.10)

The tip of the vector field E travels out an ellipse as show in Figure 3. With
the thumb pointing in the z direction, and the wave rotating in the direction of
the fingers, such a wave is called left-hand elliptically polarized (LHEP) wave.
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Figure 3:

When E1 = E2, the ellipse becomes a circle, and we have a left-hand cir-
cularly polarized (LHCP) wave. When α = −π/2, the wave rotates in the
counter-clockwise direction, and the wave is either right-hand elliptically po-
larized (RHEP), or right-hand circularly polarized (RHCP) wave depending on
the ratio of E1/E2. Figure 4 shows the different polarizations of the wave wave
for different phase differences and amplitude ratio.
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Figure 4: In this figure, ψ = −α in our notes, and A = E2/E1 (Courtesy of J.A.
Kong, Electromagnetic Wave Theory).

Figure 5 shows a graphic picture of a CP wave propagating through space.

8



Figure 5: Courtesy of Wikipedia.

2.1 Arbitrary Polarization Case and Axial Ratio

The axial ratio (AR) is an important figure of merit for designing CP antennas
(antennas that will radiate CP waves). The closer is this ratio to 1, the better
the antenna design. We will discuss the general polarization and the axial ratio
of a wave.

For the general case for arbitrary α, we let

Ex = E1 cosωt, Ey = E2 cos(ωt+ α) = E2(cosωt cosα− sinωt sinα) (2.11)

Then

Ey =
E2

E1
Ex cosα− E2

[
1−

(
Ex
E1

)2
]1/2

sinα (2.12)

Rearranging and squaring, we get

aEx
2 − bEx2Ey2 + cEy

2 = 1 (2.13)

where

a =
1

E1
2 sin2 α

, b =
2 cosα

E1E2 sinα
, c =

1

E2
2 sin2 α

(2.14)

After letting Ex → x, and Ey → y, equation (2.13) is of the form,

ax2 − bxy + cy2 = 1 (2.15)

The equation of an ellipse in its self coordinates is(
x′

A

)2

+

(
y′

B

)2

= 1 (2.16)
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where A and B are axes of the ellipse as shown in Figure 6. We can transform
the above back to the (x, y) coordinates by letting

x′ = x cos θ − y sin θ (2.17)

y = x sin θ + y cos θ (2.18)

to get

x2
(

cos2 θ

A2
+

sin2 θ

B2

)
− xy sin 2θ

(
1

A2
− 1

B2

)
+ y2

(
sin2 θ

A2
+

cos2 θ

B2

)
= 1

(2.19)

Comparing (2.13) and (2.19), one gets

θ =
1

2
tan−1

(
2 cosαE1E2

E2
2 − E1

2

)
(2.20)

AR =

(
1 + ∆

1−∆

)1/2

> 1 (2.21)

where AR is the axial ratio where

∆ =

(
1− 4E1

2E2
2 sin2 α(

E1
2 + E2

2
)2
)1/2

(2.22)

Figure 6:
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2.2 More about Polarization and Power Flow

It is to be noted that in the phasor world, (2.1) becomes

E(z, ω) = x̂E1e
−jβz + ŷE2e

−jβz+jα (2.23)

For LHEP,

E(z, ω) = e−jβz(x̂E1 + jŷE2) (2.24)

whereas for LHCP

E(z, ω) = e−jβzE1(x̂+ jŷ) (2.25)

For RHEP, the above becomes

E(z, ω) = e−jβz(x̂E1 − jŷE2) (2.26)

whereas for RHCP, it is

E(z, ω) = e−jβzE1(x̂− jŷ) (2.27)

For a linearly polarized wave,

S(t) = E(t)×H(t) = ẑ
E0

2

η
cos2(ωt− βz) (2.28)

indicating that for a linearly polarized wave, the instantaneous power is function
of both time and space. In the above E0 is the amplitude of the linearly polarized
wave.

For a circularly polarized wave,

E = (x̂± jŷ)E0e
−jβz (2.29)

H = (∓x̂− jŷ)j
E0

η
e−jβz (2.30)

Then

E(t) = x̂E0 cos(ωt− βz)± ŷE0 sin(ωt− βz) (2.31)

H(t) = ∓x̂E0

η
sin(ωt− βz) + ŷ

E0

η
cos(ωt− βz) (2.32)

Then the instantaneous power becomes

S(t) = E(t)×H(t) = ẑ
E0

2

η
cos2(ωt− βz) + ẑ

E0
2

η
sin2(ωt− βz) = ẑ

E0
2

η
(2.33)

In other words, a CP wave delivers constant power independent of space and
time.

11



Figure 7:

It is to be noted that in cylindrical coordinates, as shown in Figure 7 x̂ =
ρ̂ cosφ− φ̂ sinφ, ŷ = ρ̂ sinφ+ φ̂ cosφ, then

(x̂± jŷ) = ρ̂e±jφ ± jφ̂e±jφ = e±jφ(ρ̂± φ̂) (2.34)

Therefore, the ρ̂ and φ̂ of a CP is also a traveling wave in the φ̂ direction in
addition to being a traveling wave e−jβz in the ẑ direction. Thus, the wave
possesses angular momentum called the spin angular momentum (SAM), just
as a traveling wave e−jβz possesses linear angular momentum in the ẑ direction.

In optics research, the generation of cylindrical vector beam is in vogue.
Figure 8 shows a method to generate such a beam. A CP light passes through
a radial analyzer that will only allow the radial component (2.34). Then a
spiral phase element (SPE) compensates for the exp(±jφ) phase shift in the
azimuthal direction. Finally, the light is a cylindrical vector beam which is
radially polarized.
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Figure 8: Courtesy of Zhan, Q. (2009). Cylindrical vector beams: from mathe-
matical concepts to applications.Advances in Optics and Photonics,1(1), 1-57.

3 A Few Words about Faraday Rotation

The prime reason why engineers have to design CP antennas is for Earth-to-
satellite communication. Hence, it is important to understand why Faraday
rotation exists.

Faraday rotation occurs for wave propagation through the ionosphere be-
cause of the Earth’s static magnetic field. According to Lorentz force law

F = qE + qv ×B0 (3.1)

where B0 is a static magnetic field. Thus, when an electric field is applied,
the force acting on the electron is not in the direction of the E field, but has
an addition force component orthogonal to the velocity of the electron. This
causes the derivation of the effective permittivity to be rather complicated. At
the end, the medium becomes an anisotropic medium where the electric flux D
does not point in the same direction as the applied electric field. The simplest
form of an anisotropic permittivity is

ε =

 ε1 jg 0
−jg ε1 0

0 0 ε2

 (3.2)

Such a medium is also known as a gyrotropic medium, and that the ionosphere
is gyrotropic because of the static biasing magnetic field of the Earth.
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A linearly polarized wave can be written as a linear superposition of LHCP
and RHCP using the identity that

x̂ =
1

2
(x̂+ jŷ) +

1

2
(x̂− jŷ) (3.3)

Assuming the E± = (x̂ ± jŷ)E0 then it can be shown that for a gyrotropic
medium, D± = ε±E±. In other words, the RHCP and LHCP wave will see a
different effective permittivity. Hence, they will have different phase velocity
given by

v± =
1

√
µ0ε±

(3.4)

The LHCP wave and the RHCP wave will propagate through a gyrotropic
medium with different phase velocities. Each of them will acquire a different
phase shift and hence, there is a phase difference between LHCP and RHCP
after they have emerged from a gyrotropic medium. Furthermore, it can be
shown that this phase difference causes the wave vector not to point in the
x̂ direction anymore, but in another direction. The is the effect of Faraday
rotation.
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